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1 Abstract
2
3 Northern peatlands are significant terrestrial carbon stores but are increasingly threatened
4 by human activities. Ombrotrophic peatlands, being naturally acidic, are particularly
5 vulnerable to alkaline pollution. Despite their importance, the effects of alkalinisation on
6  peatlands remain insufficiently studied. In Estonia, alkaline pollution from a cement industry
7 and oil shale power plant emissions have degraded several peatlands since the 19th century.
8  Although some sites have recovered in recent decades, more severely impacted areas remain
9  in poor condition.
10
11  We investigated the effects of alkalinisation on Varudi peatland, a forested site in northeast
12 Estonia, which was exposed to 125 years of alkaline emissions from a nearby cement factory.
13 Using a multi-proxy, high-resolution palaeoecological approach combined with a precise and
14  reliable age-depth model, we reconstructed changes in environmental, chemical, botanical,
15 and hydrological conditions over the past millennium. Our findings revealed three
16  successional phases: during the mid-12th century CE, land clearance and increased mineral
17  deposition caused the site to transition from a bog to a poor fen phase between
18  approximately 1250-1570 CE; and while the cement factory operated without efficient filters,
19  the site became a pine-dominated fen between 1871-1995.
20
21  After the installation of filters in 1996, peatland pH returned to pre-disturbance levels, and
22 some recovery was observed. However, the site remains degraded. Our results indicate that
23 alkalinisation significantly disrupts peatland functioning, reducing carbon storage and altering
24 vegetation communities. These effects can persist for decades even after the source of
25  contamination is removed, underscoring the need for more comprehensive monitoring of
26  peatlands impacted by alkaline pollution globally.
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27 1. Introduction
28
29 Despite only covering c. 3% of the Earth’s surface, northern peatlands contain >500

30 gigatonnes of carbon (Bridgham et al., 2008; Yu et al., 2010; Yu, 2012). Their capacity to
31 accumulate and store carbon results from the waterlogged and acidic nature of their soils
32  (Clymo et al., 1998). These conditions preserve organic material, which accumulates and may
33  be stored indefinitely (Harenda et al., 2018). Since their initiation, peatlands have slowly
34  removed carbon from the atmosphere, imparting a weak but persistent cooling effect upon
35 global climate over millennial timescales (Frolking et al., 2006).

36

37 Despite being recognised as a valuable tool for climate change mitigation, peatlands still
38 receive little protection, regionally or nationally (Rawlins and Morris, 2010). As of 2018,
39  approximately 10% of the remaining peatlands worldwide are in a degraded state (Leifeld and
40  Menichetti, 2018), while in Europe this rises to 25% (Tanneberger et al., 2021). Such
41  disturbance can disrupt the fragile hydrological balance that maintains the carbon sink
42  function of peatlands and may cause them to shift from sinks to sources of atmospheric
43  carbon, exacerbating climate change (Leifeld and Menichetti, 2018).

44

45  Estonia is one of Europe’s most peat-rich countries, with peatlands covering c. 22.5% of its
46  land area (Orru and Orru, 2008). Due to this abundance, peat is a significant natural resource
47  for Estonia, and has been heavily exploited, particularly after the Industrial Revolution (Paal
48  etal., 2010; tucéw et al., 2022). The rise in anthropogenic pollution since this time has caused
49  substantial changes in global geochemistry such that this era is informally termed ‘the
50 Anthropocene’ (Fiatkiewicz-Koziet et al., 2018; Waters et al., 2023). During this time in
51  Estonia, emissions from industrial sources were characterised by high levels of calcium-rich
52  particulate matter, with most of the emissions concentrated in the northeastern industrial
53  region of the country (Liblik et al., 1995; Karofeld, 1996). Ombrotrophic peat bogs, which are
54  the dominant type of peatlands in Estonia, being naturally acidic and nutrient-poor
55  ecosystems are particularly sensitive to alkaline atmospheric pollution (Paal et al., 2010).
56  These emissions caused significant changes in the geochemical and botanical composition of
57  bogs adjacent to pollution sources, which resulted in dramatic increases in pore-water pH and
58 losses of bog-specific vegetation (including Sphagnum mosses) near affected sites (Paal et al.,

59  2010; Vellak et al., 2014). This was often followed by encroachment of Pinus sylvestris (Scots
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60 pine)onto polluted sites alongside other species typical of nutrient-rich alkaline environments
61 (Pensaetal, 2004, 2007; Ots and Reisner, 2006; Kaasik et al., 2008; Kask et al., 2008).

62

63 By the 1990s, industrial emissions in Estonia began to fall, following a decline in power
64  generation and improved filtration systems in factories (Liiv and Kaasik, 2004). Following
65 these reductions, polluted peatland sites began to show signs of recovery, with acidic
66  conditions and bog-specific vegetation returning (Karofeld, 1996; Kaasik et al., 2008; Paal et
67 al, 2010). However, in more heavily polluted sites this recovery has been slow, and the impact
68  of past alkaline pollution persists to this day in some areas (Ots and Reisner, 2006). It remains
69 unclear whether current levels of atmospheric pollution are sufficiently low to permit their
70  full recovery in the future, or how long this process will take (Paal et al.,, 2010). Despite
71  growing concerns over alkaline pollution and its potential future effect on peatlands,
72  particularly concerning their role as carbon reservoirs, research exploring the effects of
73 alkalinisation upon peatland ecosystems and their subsequent recovery has been limited.

74

75  Atmospheric pollution remains a significant threat to peatland ecosystem functioning
76  (Bobbink et al., 1998; Turetsky and St Louis, 2006; Osborne et al., 2024). The effects of alkaline
77  pollution upon peatlands have been relatively overlooked relative to those of acid rain due to
78 its effects being more localised (Vellak et al., 2014; Sutton et al., 2020). However, nearly two
79  billion tonnes of alkaline residues are emitted into the atmosphere each year (Gomes et al.,
80  2016). Despite environmental standards curbing emissions in recent decades, in some areas
81 these regulations are not consistently enforced or are merely declarative (Abril et al., 2014;
82 Ivanov et al., 2018). Following global reductions in acid rain since the 1980s, the relative
83  proportion of alkaline pollutants in airborne particulate matter has increased in UK, much of
84  Europe, North America and China since 1986 (Turetsky and St Louis, 2006; Sutton et al., 2020).
85  Additionally, climate change may exacerbate the effects of alkaline pollution in boreal
86 regions, as permafrost thawing may cause the expansion of areas of open water, increasing
87  surface runoff and infiltration in some regions (Walvoord and Kurylyk, 2016). This may allow
88 for longer contact times between surface water and carbonate bedrock, accelerating
89  weathering and raising the pH of surface waters which may then enter peatlands in the
90  surrounding catchment (Schindler, 1997; Osterkamp et al., 2000; Lehmann et al., 2023).

91
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92 Inthis study, we focus on the effects of alkalinisation resulting from over 125 years of intense
93  emissions from a nearby cement factory upon Varudi soo (bog), a formerly ombrotrophic
94 peatland in northeastern Estonia. By employing a high-resolution, multi-proxy
95 palaeoecological framework, we reconstruct changes in the chemical, botanical, hydrological
96 and environmental conditions of the site over the past millennium to address the following

97 questions:

98

99 1. What is the current state of a heavily polluted raised bog almost 30 years after the
100 reduction in alkaline pollution?
101 2. How has alkaline pollution altered the ecosystem functioning of the site and how does
102 this compare with pre-disturbance conditions?
103 3. To what extent has this ecosystem function recovered 30 years after removing the
104 point source of pollution?
105 4. Can we identify critical transitions that can be broadly applied to assess peatland
106 condition and recovery following alkaline pollution?
107 2. Methods and materials

108 2.1. Study area
109
110 Varudi bog (59°26'19"N, 26°35'13"E) is located in Lddne-Virumaa, northeastern Estonia,

111  consisting of fen-bog habitats. The site is approximately 10 km south of the coast of the Gulf
112 of Finland and Baltic Klint (Figure 1) and spans c. 12.6 km?. The site is primarily a forested
113 Sphagnum bog interspersed by numerous bog pools and hummocks, with an overstory of
114  Pinus sylvestris. Varudi peatland receives 478 mm of rainfall per year, has a mean annual
115 temperature of 7.3 °C, and prevailing winds are from the southwest and south. The underlying
116  bedrock is composed of Cambrian and Lower Ordovician siliciclastic sedimentary rocks and
117  Middle Ordovician limestones (Sibul et al., 2017) covered with a relatively thin layer of glacial
118 and post-glacial sediments.

119
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121  Figure 1: Map of study locations. A. Modern-day Estonia (in Gray). The red shaded square in map 1A
122  indicates the area mapped in map 1B. B. Locations of sites relevant to this study (Kunda Cement
123 Factory: Red, Aru-Lduna Quarry: Yellow, Varudi peatland: Blue). C. Satellite image of Varudi bog (©
124  Microsoft) showing the extent of peat cutting and drainage that has taken place over the past century.
125  The red-shaded area indicates the area mapped in map 1D. D. Close-up of the location from where
126  core VAR1 was recovered (red star). E. Coring location.

127
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EFA.204.0.168924

128 —
129 Figure 2. Photographs of the Kunda Cement factory and locale taken during the 1980s and 1990s,

130  showing A. Cement dust emissions from the chimneys. B. Photograph of chimneys and factory
131  surroundings. C. Photograph of the factory workings, showing substantial cement dust deposition in
132 the surrounding area. D. Photograph showing cement dust deposition upon house near the factory.
133 Photography by: A and D: Atko Heinsalu taken in the early 1990s; B: Estonian National Archives Photo
134  Database (code EFA.204.0.268452) August 1994 Albert Truuvaart. C: Estonian National Archives Photo
135 Database (code EFA.204.0.168924) August 1989 Tiit Veermae.

136

137  Varudi was selected for study due to its proximity (7.5 km NW) to the Kunda Nordic Tsement
138  Factory (henceforth Kunda Cement Factory) (Figures 1 and 2), which has been operational
139  since the 1870s. During the late 1970s, cement production peaked at c. 1.2 million tonnes per
140  year (Figure 3). The dust emissions from the cement plant have fluctuated between 45,000
141  and 99,000 tonnes per year during the last decades of the 20t century, with the highest dust
142  emissionsrecorded in 1991 (Ots and Mandre, 2012). In addition to emissions from the cement
143  factory, the site has also received emissions from nearby industries and oil shale power plants,
144  including the Balti power plant, located approximately 100 km west, and the Aru-Lduna
145 limestone quarry, situated 8 km to the east (Karofeld, 1996, Figure 1) which supplies raw

146  materials for cement production at Kunda. However, significant emission reductions occurred



https://doi.org/10.5194/egusphere-2025-1351
Preprint. Discussion started: 17 April 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

147  after 1996, following the installation of pollution control filters, which lowered emissions
148  from 14,000 tonnes in 1996 to 530 tonnes in 2000 and 8 tonnes in 2020 (Figure 3).

149  The input of alkaline cement dust emissions has generated the drastic pH increase of bog’s
150 water. During 1996-1997, the pH levels taken from peat pools at Varudi varied from 7.6 to
151 8.5, whereas in natural conditions bog pools have a pH in the range of 3-4. Disturbances at
152  the site are compounded by drainage and peat harvesting for horticulture, which continues
153  to the present day, with harvesting affecting around 40% of the former centre of the site
154  (Figure 1C).
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156 Figure 3. Cement annual production and emissions by the Cement Factory in Kunda. Data adapted from Trumm
157 etal., (2010), digitised from a figure at page 209 using WebPlotDigitiser: https://automeris.io/WebPlotDigitizer/
158 Emissions data (available from 1985 to 2023) sourced from Raukas (1993); Partma (2023) and Heidelberg
159 Materials Kunda AS (2023). Note the logarithmic scale for emission values.

160

161  The chemical composition of the cement dust emissions from Kunda consists primarily of CaO
162 (12 —17%), SiO2 (6 — 9%), and several other trace metals, including lead (Pb, c. 60 mg kg),
163  cadmium (Cd, c. 0.9 mg kg!), and zinc (Zn, 129 mg kg!) (Mandre and Ots, 1999). The pH of
164 the cement dust in the water solution ranged between pH 12.3 to 12.6 (Mandre and
165  Korsjukov, 2007).

166 2.2. Coring method
167

168 In August 2022, an 86 cm peat core (VAR1) was extracted from Varudi peatland using a 1-

169 meter-long Wardenaar peat corer (Wardenaar, 1987, coring location: 59°26'23"N,
8
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170  26°35'55"E, Figure 1D). The core site was located near an actively harvested peat area but is
171  within an intact section of the site in what was originally the bog’s central raised dome.
172  Vegetation was characterised by Pinus sylvestris, with the ground cover dominated by
173  Eriophorum spp., Menyanthes trifoliata, Vaccinium spp., and scattered Betula nana. Both
174  Sphagnum and brown mosses were also present. Despite its proximity to a drainage ditch,
175 the coring location was representative of the overall condition of the site.

176

177  Following recovery, the core was wrapped in plastic and transported to the Faculty of
178  Geographical and Geological Sciences at Adam Mickiewicz University, Poznan, Poland for

179  analysis. The core was stored at 4 °C prior to sub-sampling.

180 2.2. Dating methods and age-depth model
181
182 Identifiable above-ground plant macrofossils were picked from 1 cm thick sub-samples taken

183  atvarious depths throughout the core, following frameworks by Piotrowska et al. (2011) and
184  Nilsson et al. (2001). Sphagnum stems, branches and leaves were preferentially used for
185  dating where present. Where these were not available, above-ground remains of ericaceous
186 plants (leaves, stems, seeds) were used instead. Initial samples were taken at 20 cm intervals
187  throughout the core to establish a baseline chronology, which was then used to determine
188  where additional samples would be selected. A total of 12 samples were sent for radiocarbon
189  analysis. Each sample was pre-treated using the acid-base-acid approach and analysed by
190 accelerator mass spectrometry (AMS) at the Poznan Radiocarbon Laboratory, Poland.

191

192  To provide a reliable chronology for recently accumulated peat, 2!°Pb and 23°*249py analyses
193  were used on material from the upper 40 cm of the core at 1 cm contiguous resolution,
194  following methods outlined by Appleby (1998). Peaks in the activity of 23°*240py, which are
195 linked to nuclear fallout events (e.g., 1950s atmospheric nuclear tests), were also measured
196 asindependent time-markers to validate and supplement the age-depth model (Mroz et al.,
197 2017; Cwanek et al., 2021). Samples were processed at the Polish Academy of Sciences’
198 Institute of Nuclear Physics, Krakdw, Poland using an AlphaAnalyst™ 7200 spectrometer
199 (Mirion Technologies). Quality control and accuracy was ensured by measuring blanks and
200 certified reference material (IAEA 447, IAEA 385) alongside the core samples (results are
201  provided in Supplementary Table 1. The activity concentration of 21°Pb (T 1/2 =22.3 yr) was

202  estimated by measurement of its decay product - 22%Po (T 1/2 = 138.4 d), while 23°*24%py was
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203  measured directly. Activity concentrations of 21%Pb and 23°*240Py are reported in units of Bq
204 kgl

205

206  The age-depth model was constructed by integrating all 1*C, 21°Pb, and 23°+240Py data within a
207  Bayesian framework in R using the package ‘rplum’ (rplum package, Aquino-Lépez et al., 2018;
208  Blaauw et al., 2021; R working group, 2023). rplum generates maximum age probabilities at
209  user-defined intervals (here every 1 cm), together with maximum and minimum ages based
210  upon calculated 95% credible intervals. This method allows for the integration of *C dates
211  with the #%Pb dates without the need for re-modelling (Aquino-Lépez et al., 2018, 2020).
212  Radiocarbon dates were calibrated in rplum using the INTCAL20 curve, with post-1950
213 samples using the BOMB1 curve for the Northern Hemisphere (Reimer et al., 2020; Uno et al.,
214  2013). In this study, the resultant ages are expressed as calendar years (cal) CE, with 0 BP
215  equal to 1950 cal CE.

216 2.3. Palaeoenvironmental proxies
217 2.3.1. Testate Amoebae
218

219  Samples were processed following a modified version of protocols by Hendon and Charman
220  (1997). Samples were placed into 50 ml centrifuge tubes filled with deionised water and
221  agitated for c. 10 minutes. These were sieved through a 300 um mesh and the smaller fraction
222 was retained. Sieved samples were centrifuged at >3000 rpm for 5 minutes and a sub-sample
223 of the resultant material was transferred to a microscope slide for identification at 400x
224  maghnification. Samples were not heated or micro-sieved, to retain small but ecologically
225  sensitive species, as recommended by Avel and Pensa (2013). A minimum count of 100 tests
226  for each sample was considered statistically significant (Payne and Mitchell, 2008). Tests were
227  identified to the species level where possible, with reference to Siemensma (2023) and Mazei
228 and Tsyganov (2006), and were later pooled into taxonomic groups defined by Amesbury et
229  al. (2016). The relative abundance (%) of each taxa count was calculated for each sample.
230  Water table depth and peat pore water pH were reconstructed using the pan-European
231  tolerance down weighted with inverse de-shrinking transfer function model by Amesbury et
232 al. (2016), based on a training set of 1302 samples spanning 35° of latitude and 55° of
233  longitude. Reconstructions were performed using the ‘Rioja’ package in R (Juggins, 2019).
234 Small species (<10-25 um, broadly oval-shaped) not included in these groupings but present
235  inthe core from Varudi were grouped under the ‘Cryptodifflugia oviformis’ group.

10
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236

237  Stratigraphically Constrained Cluster Analysis (CONISS) was used to quantitatively define
238  stratigraphic zones in the sub-fossil testate amoeba data (Grimm, 1987). This method is used
239  to determine statistically significant zones, reflecting changes in testate amoebae community
240 composition. the data were square root transformed prior to applying CONISS. The numbers
241  of statistically significant zones were determined using Broken-Stick modelling.

242

243  We applied the framework outlined by Burge et al. (2023) to identify significant ecological
244  transitions in the testate amoeba communities due to disturbance. Sub-fossil data were
245  Hellinger transformed and analysed using the ‘prcurve’ function in the ‘analogue’ package in
246 R (Simpson and Oksanen, 2016). Principal response curves, which reduce multi-dimensional
247  community data to a single-dimensional curve, calculating the (dis)similarity between sample
248  scores indicative of the difference between samples (De’ath, 1999; van Den Brink and Braak,
249  1999) provided the best fit for our data. A generalised additive model (GAM), an approach
250 effective in capturing rapid and non-linear changes in palaeoecological studies, was applied
251  tothe PrC data to account for temporal autocorrelation (Auber et al., 2017; Beck et al., 2018;
252  Burge et al., 2023). Given the abrupt changes in our data, we also applied an adaptive spline
253  GAM following Burge et al. (2023). However, this method does not account for temporal
254  autocorrelation and thus remains incompatible with the GAM framework as outlined by

255  Simpson (2018).

256 2.3.2.  Plant macrofossils
257
258  Plant macrofossil analysis followed procedures adapted from Mauquoy et al. (2010). Samples

259  of approximately 5 cm3®were sieved through a 200 pm test sieve and the larger fraction was
260 retained. Botanical composition was estimated as percentages under a low-powered
261  microscope at a 10—100x magnification, using a 10 x 10 eyepiece graticule for quantification.
262  Seeds, fruits, spindles, leaves, and wood were also identified at the species level where
263  possible and counted as individual counts. Identification was aided by identification guides
264  (Katz et al., 1965, 1977; Grosse-Brauckmann, 1972, 1974; Tobolski, 2000; Mauquoy and van
265  Geel, 2007; Bojnansky and Fargasova, 2007). Sphagnum remains were identified to sub-
266  generic sections, with 100 leaves examined per sample, where possible, to calculate the

267  relative abundance of each sub-section as a percentage of the total leaves identified.

11
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268 2.3.3.  Pollen, non-pollen palynomorphs and microscopic
269 charcoal analyses

270  Past changes in vegetation cover at the landscape scale were assessed using pollen analysis
271  (Seppéd and Bennett, 2003). A total of 22 samples were prepared following the laboratory
272  procedures outlined by Berglund and Ralska-Jasiewiczowa (1986). Each 1 cm thick sample,
273  measuring 1 cm?, was sub-sampled at 5 cm intervals throughout the core. The samples were
274  treated with 10% potassium hydroxide (KOH) to remove humic compounds before acetolysis.
275 A Lycopodium tablet (batch no: 280521291, 18,407 spores per tablet; Manufacturer: Lund
276  University) was added to each sample to calculate pollen concentrations, following methods
277 by Stockmarr (1971). Samples were transferred to microscope slides and mounted in
278  glycerine jelly for analysis. Pollen, spores, and selected non-pollen palynomorphs (NPPs) were
279 identified and counted using a high-powered stereo microscope. Identification was based on
280  established atlases and keys (Pollen: Moore et al., 1991; Beug, 2009; NPPs: van Geel, 1978;
281  van Geel and Aptroot, 2006; Miola, 2012). Although a target of 500 terrestrial pollen grains
282 was aimed for per sample, this count was not always achievable due to low pollen
283  concentrations in some core sections. The relative abundance of spores and NPPs was
284  calculated as a proportion of the terrestrial pollen sum (TPS), which includes both arboreal
285  (AP) and non-arboreal (NAP) pollen, excluding aquatic and wetland plant spores, Ericaceous

286  pollen, and NPPs.

287  In addition to pollen counts, microscopic charcoal particles (> 10 - < 100 um) were counted
288  from pollen slides as past fire activity, both natural and anthropogenic (Finsinger and Tinner,
289  2005), while spheroidal carbonaceous particles (SCPs) counted as indicators of industrial
290 activity (Patterson Ill et al., 1987; Swindles, 2010). Microcharcoal concentrations per cm3
291  were calculated by dividing the number of particles counted with the number of Lycopodium
292  spores and multiplying this by the total number of particles counted, and accumulation rates
293  (reported as particles cm™ yr'! were calculated by dividing the pollen concentration with the

294  rPlum-derived age increments per cm slice.

295 2.3.4. Apparent rates of carbon accumulation

296

297 To measure apparent rates of carbon accumulation (aCAR), contiguous 1 cm-thick sub-
298 samples were taken throughout VARL. The volume of each wet sample was determined by

299  water displacement, and then the samples were dried in an oven at 105 °C until no further
12
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300 weight loss occurred. Dry bulk density was calculated by dividing the wet volume by the dry
301 mass of each sample. Organic matter content (derived from LOI) was determined by ashing

302 the samples at 550 °C for six hours, following the method of Chambers et al. (2011).

303 The carbon content of each sample was estimated indirectly by multiplying the LOI content
304 by 0.52, based on the average ratio of organic carbon (OC) and LOI in ombrotrophic peat from
305 multiple studies (Ball, 1964; Dean, 1974; Gorham, 1991; Clymo et al., 1998). Carbon density
306 was calculated by multiplying the dry bulk density (g cm3®) by the percentage of carbon
307 content, as described by Chambers et al. (2011). Apparent carbon accumulation rates (aCAR)
308 were then calculated by dividing the carbon density from each peat slice by the sedimentation

309 rate, determined from the age-depth model (Young et al., 2019, 2021).

310 2.3.5.  uXRF-Core Scanning (ITRAX)
311

312 To identify the section of the core affected by cement dust pollution, we followed methods
313  similarto those used by Varvas and Punning (1993) to assess pollution histories from Estonian
314 lake sediments. They identified rapid increases in micro-element concentrations associated
315  with alkaline fly-ash emissions, accompanied by a decrease in organic matter, indicating the
316  presence of particulate emissions from oil-shale combustion by power plants.

317

318 In this study, the concentrations of geochemical elements throughout the core were
319 measured using an ITRAX puXRF core scanner equipped with a molybdenum X-ray tube.
320 Element concentrations were quantified as counts per second, based on the number of
321 secondary fluorescence detected for each element over a given period. Measurements were
322  taken at 5 mm intervals (30 kV, 50 mA, exposure time: 30 seconds per step) at the Institute
323  of Geography, University of Bremen, Germany. The scanner identified the activity of the
324  following elements: Al, Si, P, S, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Br, Rb,
325 Sr,Y, Ba, Pt, Pb, Bi, and Fe.

326

327 The mean concentrations of each element were calculated for each 1 cm slice of the core. To
328  account for variability in element concentrations due to sedimentation throughout the core,
329  the results were normalised by dividing the total counts by the sum of the coherent and
330 incoherent peaks, following the approach of Orme et al. (2015) as recommended by Longman

331 etal (2019). The chemical signature of cement dust was identified based on the composition

13
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332  of clinker emissions from the Kunda Cement factory, as detailed by Kl63eiko et al. (2011). Due
333  to the uneven and unconsolidated nature of the top 6 cm of the core, this section was not
334  scanned and was removed prior to analysis.

335

336  Principal Component Analysis (PCA) was used to summarise patterns of variation in the
337 geochemical data, using the 'vegan' package in R (Oksanen et al., 2019). To mitigate scaling
338 effects, the data were standardised to z-scores. The analysis was conducted with varimax
339 rotation in correlation mode, to explore correlations between elements and organic matter
340 percentage (Silva-Sanchez et al., 2014). The number of components to retain for analysis was

341  determined using a Broken-Stick model.

342 3. Results.

343 3.1. Dating and age-depth model.
344
345  Atotal of 13 radiocarbon dates were analysed from core VAR1, four of which were post-bomb

346  dates extending to a depth of 19.5 cm. The oldest dated section of the core produced a date
347  of > 1000 yr. Radiocarbon and calibrated dates are shown in Table 1.

348

349

350 Table 1. Uncalibrated and calibrated radiocarbon dates from core VAR1, including depths and
351 materials used for dating. PMC = Percent modern carbon

352
Code Depth  Radiocarbon Material dated Calibrated dates + uncertainties
(cm) Age + error
Poz-164520 5.5 104.51+0.33  Seeds, ericaceous 68.3% probability
pMC leaves 1950 — 1957 (5.6%)

2010 - 2012 (62.7%)
95.4% probability
1956 — 1957 (10.6%)
2009 — 2012 (79.9%)
2012 - 2013 (5%)
Poz-164521 9.5 110.06 £+ 0.67  Seeds, ericaceous 68.3% probability
pMC leaves 1957 — 1958 (7.5 %)
1997 — 1999 (50%)
1999 — 2000 (10.8%)
95.4% probability
1958 (11.2 %)
1996 — 2001 (85.2 %)
Poz-164662 15.5 110.36 £ 0.48  Seeds, ericaceous 68.3% probability
pMC leaves 1958 (7.3%)
1997 — 1999 (56.9%)
2000 (4.1%)

14
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95.4% probability
1958 (11.9%)
1997 — 2000 (80.3%)
Poz-161987 19.5 118.8 £ 0.67 Sphagnum stems, 68.3% probability
pMC leaves, branches 1986 (68.3%)
95.4% probability
1959 (5.4%)
1960 (3.4%)
1986 - 1989 (86.7%)
Poz-162663 26.5 80+30 Sphagnum stems, 68.3% probability
leaves, branches 1697 - 1724 (22.0%)
1814 - 1837 (20.1%)
1881 - 1913 (26.1%)
95.4% probability
1691 - 1729 (26.2%)
1809 - 1922 (69.3%)
Poz-164664 34.5 80+35 Sphagnum stems, 68.3% probability
leaves, branches 1695 - 1725 (21.6%)
1813 - 1839 (19.6%)
1878 — 1916 (27.1%)
95.4% probability
1686 - 1725 (26.4%)
1805 - 1929 (69.0%)
Po0z-161988 39.5 105430 Sphagnum stems, 68.3% probability
leaves, branches 1695 - 1725 (19.9%)
1813 - 1839 (17.5%)
1846 — 1853 (4%)
1869 - 1872 (1.4%)
1878 - 1916 (25.5%)
95.4% probability
1683 - 1737 (25.9%)
1803 - 1937 (69.5%)
Poz-163962 49.5 540430 Sphagnum stems, 68.3% probability
leaves, branches 1329 -1338 (8.5%)
1397 - 1428 (59.8%)
95.4 % probability
1323 - 1357 (26%)
1392 - 1437 (69.5%)

Poz-161989 59.5 865130 Sphagnum stems, 95.4% probability
leaves, branches 1153 - 1263 (87.2%)

Poz-163963 69.5 875430 Sphagnum stems, 95.4% probability
leaves, branches 1126 - 1231 (79.2%)

1243 - 1258 (1.8%)

Poz-161990 79.5 910430 Sphagnum stems, 68.3% probability
leaves, branches 1047 - 1085 (28.6%)

1097 - 1103 (2.8%)
1126 - 1179 (30%)
1192 - 1205 (1.8%)
95.4% probability
1041 — 1214 (95.4%)
15
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Poz-161992 85.5 985430 Sphagnum stems, 68.3% probability
leaves, branches 1022 - 1048 (26.8%)
1084 - 1128 (34.7%)
1140 - 1150 (6.8%)
95.4% probability
994 — 1055 (38.7%)
1076 — 1158 (56.7%)

353
354
#%pp activity (Bq kg" activity concentration) Cement production (1000 tonnes per year)
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E 104
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356 Figure 4. Comparison between 2*°Pb activity concentrations throughout core VAR1 and cement production.
357 Values interpolated from a GAM fitted to annual cement production data from Kunda Cement Factory (Figure
358 2; Trumm et al., (2010)) at the same age frequency as the VAR1 age depth model, Figure 5) using a GAMM.

359

360 The 21°%Pb activity profile throughout core VAR1 (Figure 4) declined throughout the core,
361 although not in a typical monotonic pattern, with a substantial increase from 12.5 cm to 19.5
362 cm, indicating that the rate of 219Pb accumulation was not constant throughout the core. This
363  spikeis due to the enrichment of 2:%Pb from fly-ash fallout from the cement factory and other
364  sources(Vaasmaetal., 2014;2017). Comparison of the 21°Pb activities and cement production
365 rates applied to the age-depth model until 1996 support this (Figure 4) with a significant
366  correlation (tp, = .487, p = <.0001), indicating that 2'°Pb accumulation in the core cannot be
367 solely attributed to precipitation. From 32 cm core depth, 2'1°Pb activities achieve low levels,
368 although they do not reach the background activity. Unsupported 2'°Pb was calculated using
369 linear regression of the last 5 samples, showing that the samples assumed background
370  activities following the final measured samples.

371

372  The #3%+2%0py activity profile reflects the history of atmospheric deposition at the site (Figure
373  5). Aclear peak at 28.5 cm corresponds to the onset of nuclear testing in 1945, followed by a
374  second, larger peak at 22.5 cm, likely associated with the peak in global fallout from bomb

375  testingin 1963, before the signing of the Partial Test Ban Treaty (Cwanek et al., 2021). Smaller

16
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383
384
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394
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397

peaks at 16.5 cm suggest possibly the 1986 Chernobyl fallout (Ketterer et al., 2004), and at

5.5 cm potentially originate from the 2011 Fukushima disaster (Bossew, 2013).
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Figure 5. 23%+240py activity with depth in core VAR1. Selected median dates from the rPlum-derived age-depth
model show good correspondence between known fallout events. Each peak may be tentatively related to a
known nuclear fallout event, as shown on the right y-axis.

The age-depth relationship for core VAR1 (Figure 6) was calculated by aligning 2!°Pb and
23%+240py data with the calibrated radiocarbon dates. Considering the enrichment of 2'°Pb
from industrial fallout, the assumption of a constant unsupported 2:°Pb supply was violated.
Despite this, anchoring the model with the known 1963 peak in 23°*240py activity and adding
a constant but uncertain reservoir effect of c. 15 years for radiocarbon dates improved the
model alighment with the peaks in 23%*240Py, A radiocarbon reservoir effect is possible in
Sphagnum peatlands, due to the recycling of ‘old’ gaseous carbon by mycorrhizal fungi
associated with ericaceous plants near the peat surface. However, this does not usually occur
when individual plant remains are dated, as was the case for our study (Piotrowska et al.,

2011).

The resulting age-depth model (Figure 6) indicates that peat accumulation rates were stable
from the base of the core until around 1255 cal CE, after which accumulation slowed to
around 0.22 yr cm™, remaining low until around 1940 cal CE, where there was a sharp

acceleration toc. 2 yrcm™?
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401 Figure 6. Age-depth model for core VAR1, including calibrated radiocarbon dates and uncertainty (green) ?'°Pb
402 activity (Bq kg?) in blue and the calendar date for the 1963 nuclear treaty peak (orange). Uncertainties for the
403 model are shown as the shaded area.

404 3.2. Peat physical and chemical properties

405

406  Figure 7 shows that activities of elements associated with clinker dust pollution began to
407  increase around c. 1873 cal CE, marking the beginning of cement production in Kunda. There
408 is evidence of increasing lithogenic dust deposition throughout the core, beginning as early
409 as the mid-12th century. There is a clear negative correlation between the activities of
410 lithogenic elements associated with cement dust (Ti, Pb, Ca, K, Fe, Cr) and organic matter
411  content, most noticeably between c. 1942 - 2006 cal CE, where lithogenic element activities
412  increase. Organic matter content falls sharply until c. 1988 cal CE, suggesting the

413  accumulation of cement dust occurred during this period, mirroring the results of studies in

18
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414  NE Estonia lakes impacted by oil shale powerplants (Varvas and Punning, 1993; Punning et al.,
415  1996; Koff et al., 2016).

416

417  The aCAR for the Varudi core is illustrated in Figure 7, which also shows the trends in LOI %,
418  bulk density, and carbon accumulation throughout the core. Over the past millennium, the
419 average aCAR for the entire core is 148.7 g OC m? yr™. This is especially high in the upper
420 section of the core, where carbon accumulation rates peak at 342.2 +231.7 g OC m? yr™". For
421  most of the record (c. 1045 to 1910 cal CE), the mean aCAR is 72.9 + 28.9 g OC m? yr™', aligning
422  more closely with average values reported for Northern peatlands (Roulet et al., 2007). The
423  rate of carbon accumulation is relatively stable from the base of the core until c. 1280 cal CE,
424  with aCAR averaging 94.5 + 19.8 g OC m? yr™". After this point, aCAR falls to 51.3 + 19.7 g OC
425 m? yr', remaining low until c. 1840 cal CE. After this date, aCAR increases significantly,

426  reaching an average of 256.6 +221.2 gOC m? yr™.
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429 Figure 7. Comparison of selected elements detected by the uXRF core scanner, as indicated by the PCA

430 analysis, for the detection of dust fallout from the Kunda Cement Factory. In addition to peat physical property
431 parameters: Loss on ignition (LOI%), bulk density and apparent carbon accumulation rates (aCAR). uXRF Data
432 are presented as counts per second and normalised by dividing the sum of incoherent (inc) and coherent (coh)
433 activities. The shaded area represents the section of core where most of the cement dust is concentrated. The
434 uppermost aCAR sample was removed from the figure to aid interpretation.

435

436  The broken stick model showed that the two first components together a significant
437  proportion (48.3%) of the total variance in the peat's chemical composition (PCA1: 25.5%,
438 PCA2: 22.8%). These components highlighted elements associated with clinker dust
439  deposition from the Kunda Cement Factory and are significantly negatively correlated with
440  peat LOI content (Figure 8).

441
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443 Figure 8. Biplot of first and second principal components showing factor loadings of individual elements scanned
444 across core VARL. Positively correlated variables point to the same side of the plot, while negatively correlated
445 elements point to the opposite sides. Peat organic matter % (Derived from Loss on Ignition) content is shown in
446 blue. The colour of the lines represents the sum factor loading of each variable for both axes, representing how
447  strongly each variable contributes to the principal component.

448
449 3.3. Palaeoecological reconstructions
450 3.3.1. Plant Macrofossils

451

452  The results of plant macrofossil analysis are illustrated in Figure 9. The plant macrofossil data
453  show three major phases of vegetation change, corresponding broadly with shifts observed
454  in the testate amoeba and palynological records (Figures 10, 11 and 12).

455
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Figure 9. Plant macrofossil stratigraphic diagram illustrating the changes in the botanical composition

456

457
458
459
From c. 1000 cal CE, the site is dominated by Sphagnum mosses, particularly those of the

throughout core VAR1. Note the mixed data types used, percentages and total counts.
subgenus Sphagnum, although by the beginning of the 12th century, Sphagnum sub.

460
461
462
463
464
465

Acutifolia becomes the most abundant. By c. 1450 cal CE, there was an increasing abundance
of monocots, likely from Eriophorum species and Cyperaceae, owing to the presence of
spindles and fruits identified to these species. During this period, Sphagnum gradually

declined, eventually disappearing entirely by the start of the next phase.

The latter portion of the record, starting c. 1970 cal CE, is characterised by a shift towards

466
467
468
469
470
471
472
473
474

more ‘woody’ vegetation. Shrub-type taxa increase initially, followed by a rise in ligneous
remains, particularly those of Pinus sylvestris. Mycorrhizal roots, bark fragments, and pine
needles become significant components of the peat's botanical composition in the upper
section. Betula is represented in the uppermost samples by its characteristic catkin scales and
fruits, along with a Betula nana leaf recovered from the surface sample. This late phase is also
characterised by a high percentage of unidentified organic material. At the top of the core,

remains of the brown moss Tomentypnum nitens, characteristic of calcareous fens, were

identified (Hajek et al., 2021).
3.3.2. Testate amoeba sub-fossil communities

475 .
Throughout core VAR1, a total of 105 distinct testate amoeba taxa were identified. The results

476
477

478
479

of the testate amoeba analysis and reconstructions are presented in Figure 10. Three distinct
21

zones were identified throughout the record by CONISS.
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The first zone, extending from the base of the core to 44.5 cm (c. 1600 cal CE) is characterised

480
species, including Archerella

481 by a mix of proteinaceous and mixotrophic

482  flavum and Hyalosphenia papilio. Other abundant species in this zone include Difflugia
483  pulex, Phryganella acropodia, Assulina muscorum and Assulina seminulum. The second zone,
484  endingat 19.5 cm (c. 1980 cal CE), shows a replacement of the dominant species by Galeripora
485  discoides, Amphitrema stenostoma, and xenosomic species such as Cyclopyxis arcelloiodes.
486 By 35.5 cm (c. 1821 cal CE), mixotrophic species have almost disappeared, replaced
487 by Cyclopyxis euryostoma, Centropyxis aculeata, Difflugia ampullula, Difflugia brevicolla
488  and Pseudodifflugia gracilis. The final zone, at the top of the core, is dominated
489 by Centropyxis elongata, Centropyxis sylvatica, Plagiopyxis spp., Euglypha rotunda type,

490  and Euglypha leavis.
491
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Figure 10. Stratigraphic plot showing changes in the relative abundance (%) of testate amoebae taxa identified

493

494 throughout core VAR1, as well as reconstructed peat pore water pH and water table depths (WTD) and

495 uncertainties. The results of CONISS are illustrated to the right of the figure, with horizontal red lines

496 representing the zone boundaries defined by CONISS. Only species with maximum abundancies above 5% are

497  illustrated. The full dataset is available in the supplementary data.

498

499  The relative abundance of testate amoeba taxa was used to reconstruct changes in water
500 table depth and peat pore water pH over time. Both reconstructions exhibit notable trends
501  throughout the past c. 1000 years. From the base of the core until c. 1330 cal CE, water table
502 depths was relatively constant, averaging 7.0 £ 2.9 cm. Conditions became progressively
503  wetter after this time, reaching a minimum of -2.5 cm by c. 1540 cal CE, possibly indicating a
504 period of open water at the coring location. Water table depth began to decrease gradually,
505  accelerating after c. 1960 cal CE and reaching a maximum by c. 2012 cal CE.
506

22
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507 Reconstructed pH values were relatively stable throughout much of the record (4.1 £ 0.5).

508  Around c. 1800 cal CE, pH began to rise, reaching a maximum of 5.4 = 0.5 by c. 1998 cal CE.

509 By c. 2006 cal CE until the top of the core, pH returned to pre-disturbance levels.

510 3.3.3.  Pollen, spores, and non-pollen palynomorphs.

511

512  The results of the palynological analysis are illustrated in Figures 11 (Pollen and spores) and
513  Figure 12 (Non-Pollen Palynomorphs- NPPs). The pollen sequence from the core VARL is
514 dominated throughout by arboreal taxa, particularly Pinus sylvestris and Betula spp., with
515 lesser contributions from shrubs such as Calluna vulgaris and Vaccinium type. The high
516 dominance of these arboreal taxa and a low sampling resolution make detecting subtle shifts
517 in human activity in the palynological record difficult to infer (Favre et al., 2008). Other
518 palynological studies from Estonia also report low variation in pollen assemblages and
519 dominance of P. sylvestris and Betula across different regions, even during periods of
520 significant land-use changes (e.g., Poska et al., 2004; Veski et al., 2005; tucow et al., 2022).
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521
522 Figure 11. Stratigraphic plot illustrating the relative abundance of selected pollen taxa from core VAR1, as well
as microcharcoal (expressed as the total number of counted fragments). Relative abundances of arboreal taxa

523

524 are shaded green, disturbance indicators in pink, crops in orange, herbaceous taxa in brown and shrubs in teal.
525 Grey shading represents 5x exaggeration. Only taxa with a minimum abundance of 2% are shown.

526
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Figure 12. Stratigraphic plot illustrating the abundance of selected non-pollen palynomorphs from core VAR1,

527
528
529 as well as spheroidal carbonaceous particles (SCPs) and Pinus stomata, both expressed as counts. Relative
530 abundances of spores of aquatic taxa are shaded blue, algae: light green, fungi: red, invertebrate remains grey
531 and testate amoebae in dark green. Grey shading represents 5x exaggeration. Only taxa with a minimum
532 abundance of 2% are shown.
533
534  The oldest section of the core (c. 1000—1250 cal CE) provides little evidence of anthropogenic
535 disturbance, indicating a largely forested landscape. This period is dominated by Pinus
536  sylvestris, Betula spp., and Picea abies, suggesting a stable, predominantly woodland
537  environment. After c. 1250 cal CE, there is a slight increase in pollen from grasses (Poaceae)
from around 3% to c. 8% of the total assemblage until c. 1680 cal CE, as well as the appearance

in low concentrations of plants indicative of disturbance, such as Plantago lanceolata,

538
539
540 Chenopodiaceae and Ranunculus acris type and a general increase in Secale pollen which
541  together may indicate low levels of agricultural activity, although wild populations of Secale
542  are believed to have existed in Estonia (Veski, 1998; Poska et al., 2003). Despite this, arboreal
543  pollen remains the dominant component of the record, with declines mainly affecting Pinus
544  sylvestris (49 % at c. 1310 cal CE to 34% by c. 1680 cal CE) and Picea abies (16% at c. 1220 cal
545  CE to 5% by c. 1680 cal CE). Tree species associated with early succession, such as Betula,
546  remain largely unchanged, while Alnus increases during this period from c. 6% at the start of
547  the record to c. 10% by c. 1680 cal CE. By c. 1680 cal CE, arboreal pollen has declined to its
548 lowest relative abundance (around 82% of the total pollen sum). This decline is driven mainly
549 by the changes in arboreal species, particularly declines in P. sylvestris, which becomes
550 progressively less common through the core, a trend that continues until c. 1965 cal CE. By
24
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551 . 1680 cal CE a peak in cereals occurs, including Hordeum, although these are only present in
552  low concentrations. The pollen record is stable after this period, with only slight (<1%)
553 increases in Calluna vulgaris and Vaccinium type taxa occurring. These changes correspond
554  with a rapid increase in microcharcoal accumulation rates, rising from 311 to 1027 particles
555 cm3yr! following the opening of the cement factory, peaking at 9837 particles cm3yr by c.
556 1970 cal CE. After this, Pinus sylvestris begins to recover, but the relative abundance of Betula
557  spp. continues to rise. By c. 2010s cal CE, Pinus sylvestris becomes dominant once again,
558  while Betula declines throughout the most recent samples, and microcharcoal accumulation
559  reaches a maximum at c. 2010 cal CE, of 172237 particles cm3yr?.

560
561 The NPP record provides a more detailed picture of changes in the local environment than

562 the pollen record. In the earliest portion of the record (c. 1000 - 1220 cal CE), fungi such
563  as HdV-90 and HdV-13 (cf. Entophlyctis lobata) are common, and HdV-27 (Bryophytomyces
564  sphagni) is present throughout. These fungi are typically associated with oligotrophic and
565  ombrotrophic conditions, although HdV-90 can also thrive in more minerotrophic or poor-fen
566  environments (van Geel, 1978; Kuhry, 1985).

567

568 Betweenc. 1220 - 1460 cal CE, HdV-13 increases in abundance. Around 1850 cal CE, taxa
569 associated with the earlier section of the record start to decline, being replaced by the
570 microalgae Botryococcus taxa, indicative of aquatic conditions in addition to several fungi
571  including HdV-55A (Sordaria type), HdV-112 (Cercophora type). The most notable species in
572  the upper section of the core during this period is HdV-201 (cf. Xylomyces chlamydosporis), a
573  wood-inhabiting fungus linked to freshwater environments or pool vegetation (Goh et al.,
574  1997; Kuhry, 1997). This species is especially abundant c. 2006 cal CE, comprising around 34%
575 oftheassemblage. After c. 1950s cal CE, the diversity of NPPs declines. A key species identified
576 in this section is Botryococcus braunii, a green alga typically found in environments with high
577 levels of inorganic phosphorus, which peaks around 1985 cal CE (Orpez et al, 2009)
578  suggesting a shift toward more nutrient-enriched conditions. Overall, the record suggests a
579  transition from nutrient-poor, Sphagnum-dominated peat towards an increasingly nutrient-

580 enriched system, followed by a change towards decomposers of ligneous material.

581 3.3.4. Rate of change analysis
582
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583  The principal response curves (PrC) explained 79% of the variance in the sub-fossil testate
584  amoeba data from Varudi and are illustrated in Figure 13. The poor fit of GAM models to the
585  PrCs prompted us to use adaptive splines with a GAM, which are recommended for data
586  exhibiting abrupt changes (Burge et al., 2023). However, adaptive spline GAMs cannot yet be
587  used within the GAM framework as described by Simpson (2018). One outlier was removed
588 due to the difference in testate amoebae composition owing to a high proportion of
589  Cryptodifflugia angusta (33.5 cm).

590
591 The PrCrevealed two separate periods of change at Varudi, as well as highlighting periods of

592  rapid change associated with the onset of cement production in Kunda in 1871, and an earlier
593 change indicated from the palynological record to coincide with increasing human activity in
594  the landscape (Figure 11). Testate amoeba community composition was relatively consistent
595  from c. 1040 cal CE until c. 1330 cal CE and again between c. 1645 to c. 1886 cal CE. Following
596  c. 1998 cal CE, the direction of change in the PrC curve reverses, coinciding chronologically
597  with the installation of filters in the cement factory in 1996. By the end of the record, testate
598 amoeba community composition was characterised by the return of species such as
599  Cyclopyxis arcelloides, Cryptodifflugia oviformis, and Assulina muscorum, which were not
600 abundant since before c. 1970 cal CE.

601
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603 Figure 13. Changes in principle response curve scores derived from sub-fossil testate amoebae data, modelled
604 using an adaptive spline generalised additive model GAM (black line). Solid red lines indicate periods of rapid
605 change, identified where the modelled confidence interval of the slope does not include zero. Vertical dashed
606 lines denote key chronological events potentially influencing environmental conditions at Varudi: The onset of
607 human activity recorded in the pollen data (c. 1250 cal CE, orange), the beginning of cement production in Kunda
608 (1871, blue) and the installation of pollution control filters at the cement factory (1996, black).
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609 4. Discussion

610 4.1. Palaeoecological assessment of ecosystem and functional
611 changes before, during, and after intensive alkaline dust
612 pollution

613

614 The palaeoecological record of the Varudi peatland reveals three distinct phases of botanical
615 change occurring over the past 1,000 years: an ombrotrophic bog phase (c. 1000-1250 cal
616  CE), a poor fen phase (c. 1250-1570 cal CE), and a wetland forest phase that continues to the
617 present day. Unlike most research on peatland recovery, which has typically been conducted
618  on historically drained, mined, or agricultural sites (Roderfeld, 1993; Graf et al., 2008; Wagner
619 et al., 2008; Paal et al., 2010), our study presents a unique pre-disturbance context for

620 understanding the effects of atmospheric pollution upon Estonian peatlands.
621

622 The different phases of development exhibited by the site in contrast with the different
623  periods of anthropogenic activity and disturbance are summarised in Figure 14. During the
624  early ombrotrophic phase, low palynological richness, minimal microcharcoal counts and
625 abundant peat organic matter indicate a largely forested landscape with limited human
626 impact near the site, consistent with other palaeoecological records throughout Estonia
627  during this period (Veski et al., 2005). The dominance of Sphagnum mosses and mixotrophic
628 testate amoeba species such asArcherella flavum and Hyalosphenia papilio reflect the
629 relatively undisturbed and productive nature of the bog during this phase (Marcisz et al.,
630  2020; tucow et al., 2022). During this period, water table depths were high, and pH levels
631 were low, consistent with natural conditions for ombrotrophic bogs in the Northern

632  Hemisphere (Warner and Asada, 2006).

633
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635 Figure 14: Summary of key trends in the Varudi peatland record. Shown are changes in reconstructed pH and
636 water table depth, percentages of non-arboreal pollen (serving as a proxy for forest clearance related to
637 agricultural activity), apparent carbon accumulation rates (aCAR), periods of significant change (as identified by
638 principal response curves with Generalised Additive Models, GAMs), and a general timeline of environmental

shifts. Dashed horizontal lines represent key historical events relevant to the Varudi record: the yellow line marks

gig the approximate onset of human activity c. 1250 cal CE, possibly linked to the Livonian Crusades; the blue line
641 indicates the establishment of the Kunda Cement Factory in 1871; the black line denotes the installation of
642 effective filters at the Kunda Cement Factory; and the grey-shaded area highlights the section of the core with
643  substantial cement dust, identified through LOI and uXRF core scanning.
644
645  The beginning of agricultural activity around c. 1250 cal CE is broadly coincident with the
646  German-Danish crusaders occupation of Estonia starting in 1227 CE (Veski et al., 2005). From
647  c. 1250 to 1570 cal CE, increased Poaceae, Secale cereale, and field weed pollen indicates a
648  shift toward more open, meadow-like conditions (Poska and Saarse, 2002; Niinemets and
649  Saarse, 2009), which may relate to the environmental effects resulting from economic
650 changes resulting from the Teutonic order crusades, similar to those identified by Brown and
651  Pluskowski (2011) in a peatland record from northern Poland.
652  Declines in Pinus sylvestris and Picea abies, alongside increases in early successional species
653  such as Betula and Alnus, and minute increases in microcharcoal accumulation rates (Figure
654  11) suggest land clearance using slash-and-burn methods in the surrounding landscape (Jaats
655 et al., 2010). While arboreal pollen remained dominant, indicating continued forest cover
656 around the Varudi peatland, mineral soil enrichment of the peat suggests overland flow or
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657 aeolian deposition resulting from land clearance. Similar patterns of early human-induced soil
658  erosion have been recorded in peatland records from central Estonia (Heinsalu and Veski,
659  2010). This is reflected by decreasing organic matter content and increasing concentrations
660 of lithogenic elements such as Ca and Ti, patterns like those observed in Estonian lake
661 sediment records following land clearance events (Koff et al., 2016; Vandel and Vaasma,
662 2018). Ti, a conservative lithogenic element, indicates soil erosion from the surrounding
663 catchment (Boyle, 2001; Boés et al., 2011). By c. 1570 cal CE, the site had transitioned into a
664  wetter, more minerotrophic fen, indicated by the gradual replacement of Sphagnum by
665 monocots such as Carex spp. and Eriophorum vaginatum in the plant macrofossil record
666  (Figure 9). Nutrient enrichment due to soil erosion resulting from forest clearance and
667  agricultural activities in the landscape at this time likely contributed to this shift (H6lzer and

668  Holzer, 1998).

669  The establishment of the Kunda cement factory in 1871 brought significant ecological changes
670 tothesite. Substantial increasesin Ti, Ca, Fe, and other elements associated with cement dust
671  fallout occurred along with increased pH and declining organic matter content, indicating the
672  chemical influence of cement dust pollution upon the peat (Figures 7 and 8). This pollution
673  appears to have driven rapid changes in testate amoeba communities by c. 1890 cal CE, as
674 seen in the PrC record (Figures 13 and 14). These results are consistent with previous
675 palaeoecological studies on alkaline pollution impacts in Estonian peatlands and lakes (Varvas
676 and Punning, 1993; Koff et al., 2016; Vandel and Vaasma, 2018; Vellak et al., 2014). The
677  enrichment of the peat by cement dust is reported to have had a fertiliser-like effect on
678 ligneous and ericaceous species, increasing tree cover, size, and stand density within the

679 industrial region of Estonia at this time (Pensa et al., 2004; Ots et al., 2011).

680 The concurrent hydrological changes experienced by the site, characterised by persistent
681  water table lowering after c. 1960, were likely driven by drainage and enhanced transpiration
682 rates following tree and shrub expansion onto the site (Stelling et al., 2023). The simultaneous
683 compounding effect of hydrological change upon the site confounds interpretation of the
684  effects of alkaline pollution at Varudi peatland, as it is likely that the changes that occurred at

685 this time were driven by the combined effects of both disturbances.

686  From 1955 CE onward, cement production increased, reflected in peaks of Ca, Ti, and K,
687  alongside rising bromine (Br) levels, coincident with increased microcharcoal accumulation

688 rates (increasing from c. 11 to 58 particles yr. The halogen Br is often linked to changes in
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689 storminess in peat palaeoecological studies due to being commonly sourced from marine
690 aerosols (e.g., Shotyk, 1997; Turner et al., 2014). Here, elevated Br levels correlate strongly
691  with cement dust indicators, suggesting that increased Br in the core corresponds with
692 enhanced plant decay and oxidation of abiotic organic matter, resulting in the formation of
693  methyl bromide (Lee-Taylor and Holland, 2000; Keppler et al., 2000). The increased presence
694  of fungiin addition to microalgae species Botryococcus braunii in the palynological and plant
695 macrofossil records further suggests that the soil decomposition rate increased during this
696  period, coincident with periods of increased seasonal wetness (Barthelmes et al., 2012;

697 Defrenne et al., 2023; Buttler et al., 2023; Thorman et al., 2003) (Figure 12).

698  Following the restoration of Estonia's independence in 1991, more rigorous environmental
699 regulationsresulted in a reduction of industrial emissions (Kask et al., 2008). The effect of this
700 decline is evident in our palaeoecological record, with declining pollution markers and pH
701  returning to pre-disturbance levels after 1996 (Figures 7 and 10), as well as the apparent
702  (albeit limited) recovery of testate amoeba communities shown by the PrC curve (Figure 13).
703  Despite these improvements, the site has remained densely forested and enriched, with a
704  persistently lowered water table. We find no evidence for botanical succession toward pre-
705  disturbance conditions in the plant macrofossil record (Figure 9), while the presence
706  of calciphilous Tomentypnum nitens at the core surface reflects the legacy of alkaline
707  conditions (Malmer et al., 1992; Hajek et al., 2006; Apolinarska et al., 2024), likely resulting
708 from the upward movement of mineral-rich water from deeper peat layers,

709  although Sphagnum has returned to the site since its disappearance.

710 4.2. Ecosystem Recovery After Reduction in Atmospheric Alkaline
711 Pollution
712

713 Our study found evidence of recovery in PrC of the sub-fossil testate amoeba assemblages
714  (Figure 13). The community composition of these environmentally sensitive proxies showed
715  signs of turnover nearly 30 years after installing filters at the Kunda cement factory. However,
716  the extent of recovery indicated by the testate amoebae is limited, as the community
717  composition in the top sediment layer more closely resembles conditions from c. 1977 cal CE,

718  the peak period of cement production at Varudi (Figures 3 and 13).

719  We used adaptive spline GAMs to analyse our data, which while suitable for datasets
720  exhibiting abrupt changes such as the example from Varudi (Burge et al., 2023), they cannot

721 vyet be incorporated into the Generalized Additive Mixed Model (GAMM) framework
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722  described by Simpson et al. (2018) and are more susceptible to issues such as temporal
723  autocorrelation and boundary effects (Simpson, 2018; Burge et al., 2023). While the model
724  best fit our data, more evidence is needed to draw conclusive interpretations about recovery
725  than these results alone. More recently accumulated samples may be more influenced by
726  temporal autocorrelation (Burge et al., 2023). Some testate amoeba species may infiltrate the
727  sub-fossil community composition downcore, making near-surface communities appear more
728  similar (Liu et al.,, 2024). Another limitation of this study is that our results are based upon
729  reconstructions taken from a single core and as such do not account for the spatial
730  heterogeneity characteristic of peatlands. Although palaeoecological trends tend to be well
731  replicated across multiple cores within a given site (e.g., Barber et al., 1999; Hendon et al.,
732  2001), it may be that the trends reconstructed from VAR1 represent conditions specific to the
733  sampling site, rather than the whole site (Bacon et al., 2017). Paal et al. (2010) examined
734  peatland vegetation communities in eleven bogs in northeastern Estonia at varying distances
735 from sources of atmospheric alkaline pollution, finding evidence of Sphagnum re-
736  establishment and the recovery of other bog-specific plant species at several sites as surface
737  waters re-equilibrated to pre-pollution conditions, particularly within microforms that are
738 less affected by contaminated groundwater. Therefore, recovery at Varudi may be spatially
739  heterogenous, with some areas recovering more quickly depending upon their contact with

740  polluted peat layers.

741  Studies investigating the recovery of vegetation communities following alkaline pollution
742  show that ecosystem recovery may be limited due to the present, degraded condition of the
743  ecosystem. For example, Vellak et al. (2014) studied bryophyte recovery following reductions
744  in atmospheric fly-ash pollution across Estonia and northwestern Russian sites. They found
745  that bryophyte species growing in more heavily affected sites tended to be adapted for
746  growing in low light conditions, due to competing with the larger and more dense vascular
747  plants that encroached on these sites, in response to the more enriched and alkaline
748  conditions for which they are better adapted than bog-specific vegetation (Partel et al., 2004;
749  Zvereva et al., 2008a, 2008b). Increased nutrient and litter supply and root exudates, coupled
750  with the faster growth of vascular plants and trees may further hinder the reestablishment of
751  bog and fen communities, delaying or preventing recovery (Konings et al., 2019). Gunnarsson
752 et al. (2002) demonstrated that nutrient enrichment, often accompanied by higher pH, can
753  give vascular plants a competitive advantage over bog-specific vegetation (Limpens et al.,

754  2003; Dieleman et al., 2015).
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755 4.3. How has the pollution impacted apparent rates of carbon
756 accumulation at the site?
757

758  Each of the phases in ecosystem development in the palaeoecological record corresponds
759  with substantial changes in the apparent carbon accumulation rate (aCAR) throughout the
760  Varudi record (Figure 7). Between c. 1000 to 1250 cal CE, when the site was in a relatively
761  pristine, undisturbed condition, aCAR rates were higher (32.0 + 10.7 g C m? yr™") than the
762  average for northern hemisphere ombrotrophic peatlands (23 £ 2 g C m? yr™) (Korhola et al.,
763  1995; Yu et al., 2009). Throughout the transition from bog to poor fen, from c. 1360 to 1570
764  cal CE, average aCAR rates increased initially (38.5 + 34.3 g C m? yr™"). However, they were
765  highly variable, likely reflecting the incorporation of vascular plant roots from the overlying
766  forested phase, introducing younger carbon into deeper sediments. Between c. 1630 and
767 1800 cal CE, rates fell as low as 19.0 + 5.4 g C m? yr™", aligning with reported values for Finnish
768 fens (Korhola et al, 1995). Overall, minerotrophic fens typically exhibit lower carbon

769  accumulation rates than ombrotrophic bogs (Loisel and Bunsen, 2020; Yang et al., 2023).

770  Following the succession from poor fen to forested fen from c. 1871 cal CE to the present,
771  thereisanapparentincrease in aCAR, especially in the most recently accumulated peat (280.7
772 +211.3gCm?yr™). Due to the incomplete decomposition of labile organic matter at the peat
773  surface, care must be taken when interpreting recently accumulated carbon from peat core
774  records (Young et al., 2019; 2021). This increase is likely due to high litter deposition from
775  trees and shrubs, and the rapid decline in aCAR downcore suggests that this labile material is
776  rapidly cycled back into the atmosphere rather than sequestered in the soil. Our results
777  suggest that the current vegetation composition, dominated by trees and shrubs, is less
778  effective for long-term carbon sequestration compared to earlier phases. While the water
779  table remains reduced, the site shows limited potential for recovery to its original
780 ombrotrophic condition due to ongoing drainage. At the same time, nutrient inputs and

781  evapotranspiration from the overlying trees compound this limiting factor.

782 4.4. Indicators of critical thresholds to assess peatland condition
783 and recovery due to alkaline pollution
784

785 By comparing our pH reconstruction with significant successional shifts at the site, we may
786 infer the thresholds at which transitions in the steady state of the ecosystem occurred in

787  response to changes in alkalinity at Varudi bog. Defining tipping points that may be broadly
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788  applied to other sites allows for predicting ecosystem shifts in response to global change,
789  allowing for prediction of such shifts in the future (Munson et al., 2018). To our knowledge,
790  ourstudyis the first to define thresholds for tipping points in peatland ecosystems in response
791  to changes in alkalinity.

792

793  Around c. 1800 cal CE, the reconstructed pH for Varudi showed an increasing trend from the
794  previous, relatively stable conditions, reaching a maximum of 5.4 £ 0.5 by c. 1990s cal CE
795  (Figure 10). This value aligns with pH measurements for polluted sites in Estonia, supporting
796  the reliability of our reconstruction (Paal et al., 2010). We find that the transition from an
797  ombrotrophic bog to fen-like conditions, driven by mineral soil enrichment resulting from
798 land clearance for agriculture in the surrounding landscape, was associated with an increase
799  of pH levels from c. pH 3.8 to pH 4.1 which represents (due to the logarithmic scale of pH)
800 nearly atwofold increase in alkalinity. Likewise, the subsequent shift from fen-like to forested
801 conditions corresponded with a small average increase in pH to c. 4.3, or c. 1.5 times more
802 alkaline than the previous state and more than three times more alkaline than during the bog
803  phase. Our results suggest that relatively small increases in pH (increases in pH of 0.2 — 0.3)
804  may result in critical ecosystem transitions. However, we stress that the threshold values
805 defined here are highly uncertain, owing to the limited predictive ability of the transfer
806 function models used for our pH reconstruction and the relatively significant uncertainties
807  associated with transfer function models in general (Amesbury et al., 2016). Higher pH values
808 measured from bog pools at the site in 1996 — 1997 of 7.6 - 8.5 are higher than our estimates
809 for this period, and by 2022 pH had only fallen to 6.3 - 6.8 (Partma, 2023), suggesting that our
810 reconstruction underestimates pH levels experienced by the site by a wide margin. In
811 addition, we cannot rule out the possibility that other impacts of cement deposition (e.g.,
812 reduced photosynthesis rates due to dust deposition) may have also played a role in driving
813  botanical changes.

814

815 Contemporary field and lab experiments that manipulate the alkalinity of peatland soils
816  directly may provide more precise values for ecosystem thresholds in response to alkaline
817  pollution. However, to date few studies have done this for alkalinisation: one example is Kang
818 et al. (2018) who conducted a series of field and laboratory pH manipulation experiments
819  across seven peatlands in the UK, Japan, Indonesia and South Korea, finding that increases in

820  pH resulted in significant changes in microbial composition, resulting in increased phenol
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821 oxidase activity and enhanced DOC releases. Another is the long-term (active since 2002)
822  Whim Bog experiment near Edinburg, Scotland (Sheppard et al., 2011; Levy et al., 2019),
823  where the effects of enrichment upon a peatland by gaseous ammonia (NH3) and wet-
824  deposited ammonium (NH4*) and nitrate (NOs’) are compared. Analysis by Sutton et al. (2020)
825 indicates that vegetation declined three times more quickly when exposed to gaseous
826 ammonia and three times for ammonium than for a similar dose of nitrate.

827

828 A significant limitation of these studies in defining tipping points is that the long timescale
829  necessary for critical transitions to occur in some cases typically exceeds the lifespan of most
830 observational and experimental studies (Taranu et al., 2018; Lamentowicz et al., 2019).
831 Therefore, further palaeoecological work across a more extensive range of sites or with
832  multiple cores from within a single site may also advance our understanding of ecosystem

833  tipping points in response to alkalinisation.

834 5. Conclusion
835
836  This study is the first to investigate the long-term impacts of alkaline emissions on a peatland

837  over centennial timescales. It establishes the first threshold indicator values for ecosystem
838 tipping points in response to alkalinisation. Our findings demonstrate that alkaline pollution
839  has had a profound influence upon ecosystem development at Varudi for more than 750
840  vyears, with ecosystem succession following both low-level, sustained mineral soil enrichment
841  due to agricultural activities and intensive fly-ash fallout sustained over 160 years. We find
842  that an increase in pH of 0.2 to 0.3 (corresponding to, approximately, a two to threefold
843 increase in alkalinity) is sufficient to trigger a critical ecosystem shift. These can lead to a long-
844  term decline in carbon accumulation over long timescales, and such changes may be slow to
845  recover or permanent, even if the point source of pollution is eliminated. Our results, while
846  insightful, have limitations that underscore the need for additional experimental and
847  palaeoecological research to assess peatland responses and resilience to alkalinisation across
848 a range of spatial and temporal scales. This would allow a better understanding of the
849  timescales required for peatland recovery and how these ecosystem transitions influence
850 greenhouse gas dynamics from affected sites. Alkalinisation poses a growing threat to
851 peatlands worldwide and is a developing challenge for the 21°t century (Sutton et al., 2020).

852  As carbon-rich ecosystems, peatlands are important in future atmospheric greenhouse gas
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853  concentrations. Understanding how peatlands will respond to future alkalisation is essential

854  for predicting the role of peatlands in climate change mitigation.
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